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Abstract

This paper presents a recursive algorithm for the deadbeat predictive control that brings thc

output response to rest after a few time steps. The main idea is to put together the system

identification process and the deadbeat control design into a unified step. It starts with

reformulating the conventional multi-step output-prediction cquation to explicitly include

the coefficient matrices to weight past input and output time histories for computation of

feedback control force. The formulation thus derived satisfies simultaneously the system

identification and the deadbeat control requirements. As soon as the coefficient matrices arc

identified satisfying the output prediction equation, no further work is required to design

a deadbeat controller. The method can be implemented recursivcly just as any typical

rccursive system identification techniques.
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1 Introduction

There arc many interesting technical problems in the area of controlled aerospace structures

that NASA researchers are trying to solve. These problems, for example, include acous-

tic noise reduction, flow control, ride quality control, flexible spacecraft attitude control

and vibration suppression. Active or passive control for a dynamic system is not a new

subject. Many control techniques 1-5 are available today and ready to be used for applica-

tion to these interesting problems. Some of the techniques are the quadratic optimization

technique 1-2, the pole placement technique 3, the virtual passive technique 4, the energy dis-

sipation technique 5, and the adaptive control technique. 6-1s Some researchers prefer to work

in the frequency domain using the frequency response functions (FRF) while others use the

state-space model (SSM) in the time-domain to design controllers. The model-based tech-

niques need a mathematical model (FRF of SSM) within a certain level of accuracy to design

a controller. Except for a few simple cases, system identification must bc involved in the

design process to verify the open-loop model and the closed-loop design as well. As a result,

it may take considerable time to iterate the design process until performance requirements

are met. For the systems with minimum uncertainties, the iteration procedure would not

bother the control engineers, as long as a satisfactory control design can be found.

For systems with unknown disturbances and considerable uncertainties, the controller

must be able to adapt the unknown changes in real time. Adaptive control techniques

are developed for this purpose. The approach is to adjust the control gains to reflect the

system changes so as to continuously check and meet the performance requirements. Most

adaptive control techniques require the controlled system to bc minimum phase 19-2_ in the

sense that all the system transmission zeros arc stable. The minimum-phase system in
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the continuous-time domain does not guarantee its minimum phase in the discrete-time

domain. In practice,only a few structural systemsin the discrete-timedomain arc minimum

phase. Predictive controller designsn-is were developed to particularly address the non-

minimum-phase problems with the hope that they can be implemented in real time. Two

indirect techniques and one direct technique were derived in Ref. 18 using the concept of

deadbeat predictive control law that brought the output response to rest after a few finite

time steps. The indirect techniques require identification of coefficient matrices of a finite-

difference model representing the controlled system. The deadbeat predictive controllers arc

then computed using the identified coefficient matrices. Note that tile identified matrices

minimize the output error between the estimated and real outputs. The direct technique

computes the deadbeat predictive controller directly from input and output data without

explicitly identifying the system parameters. However, it requires to minimize the output

error first and then perform a Hankel-likc is matrix to calculate the control gains for the past

input and past output signal. Since it takes time to invert a matrix, both direct and indirect

algorithms have a drawback for real time application. Nevertheless, the direct algorithm did

provide the fundamental framework for further development of a recursive technique for real

time implementation.

A new recursive technique is presented in this paper for the design of a deadbeat

predictive controller. It uses the approach derived in Rcf. 18 for the direct algorithm. The

technique computes the gain matrices recursively and directly from input and output data in

every sampling period. In addition, the recursivc formula satisfies both system identification

and deadbeat predictive control equations simultaneously. As a result, the design process is

completed in such a way that there is no time delay between the identification step and the



control gain computation step.

This paper begins with a brief introduction of multi-step output prediction. 18 The

basic formulation for a deadbeat controller design is then derived giving the mathematical

foundation of the recursive method. A recursive formula with computational steps is also

included for real-time implementation. With a slight modification, the formula is extended

to compute the feedforward gain for a measurable or predictable disturbance input. Finally,

several numerical examples are given for illustration of the method.

2 Multi-Step Output Prediction 18

The input/output relationship of a linear system is commonly described by a finite difference

model. Given a system with r inputs and m outputs, the finite difference equation for the

r x 1 input u(k) and the m x 1 output y(k) at time k is

y(k+l) = oqy(k)+o_2y(k-1)+...+c_py(k-p+l) (1)

+_0_(k) + 91_(k) + _2_(k - 1)+--. + _p_(k - p + 1)

It simply means that the current output can bc predicted by the past input and output

time histories. The finite difference model is also often referred to as the ARX model where

AR refers to the AutoRegressivc part and X refers to the cXogencous part. The coefficient

matriccs, c_i (i = 1, 2, .--, p) of m x m and/3_ (i = 1, 2,-.., p) of m x r are commonly referred

to as the observer Markov parameters (OMP) or ARX parameters. The matrix/3o is the

direct transmission term.

Equation (1) produces the following multi-step output prediction TM

yp(k + q) = T'up+q(k) + B'up(k - p) + ,A'yp(k - p) (2)



where

and
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o_(q+p_l) O/P -I(q+p-1) • • • o/_q+p-1)

The quantity yu(k + q) represents the output vector with a total of p data points for each

scnsor from the time step k + q to k + q + p - 1, whercas yp(k - p) includes the p data

from k - p to k - 1. Similarly, Uq+p(k) has q + p input data points starting from the timc
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step k and up(k - p) has p input data points from k - p. The matrix T' is formed from the

parameters, /30,/300),..., and/3_q+p-1) (the pulse response sequence).

The vector yv(k+q) in Eq. (2) consists of three terms. The first term is the input vector

%+p(k) including inputs from time step k to k + q + p - 1. Relative to the same time k, the

second and third terms, uv(k- p) and yp(k- p), are input and output vectors from time step

k - p to k - 1, respectively. The future input vector us(k) is to be determined for feedback

control. The matrices B' and A' may be computed from observer Markov parameters c_i

•(i = 1, 2,-.., p) and/3i (i = 1, 2,-.-,p), or directly from input and output data.

3 Deadbeat Predictive Control Designs

Several deadbeat control algorithms have been developed is using the multi-step output pre-

diction, Eq.(2). Among these algorithms, the direct algorithm uses the input and output

data directly without using c_, (i = 1, 2,..-,p) and _, (i = 1, 2,-..,p) to first compute B'

and .,4' and then design a deadbeat predictive controller. The goal was to make thc direct

algorithm suitable for real-time implementation in the sense that the deadbeat controller

may be updated at every sampling interval. Unfortunately, it involves a matrix inverse that

is difficult, if not impossiblc, to compute it recursivcly. To overcome the computational

difficulty, an alternative algorithm is developed in this section.

Let 7'' be partitioned into two parts such that Eq.(2) becomes

yp(k + q) = :Toup(k + q) + T_Uq(k) + B'up(k - p) + .A'yp(k - p) (5)
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where

and

u,(k + q)=

u(k + q)

u(k + q + 1)

u(k +q+p-1)

_o(k)=
u(k + 1)

u(k + q- 1)

(6)

_To z

_C

_0 0 ° ° °

/30(1) /_0 •'•

: : "..

_q) _q-- 1)

_q+ 1) _0(q )

1

0

0

... 9;1)

... 9;_)

• °

... _p)

(7)

Both To of pro x pr and Tc ofpm x qr arc formed from system pulse response (system Markov

parameters). Note that m is the number of outputs, p is the order of the ARX model, r is

the number of inputs, and q is an integer• Given any input and output sequence u(k) and

y(k), Eq. (5) must be satisfied and can be used for identifying coefficient matrices 2to, _, A',

and B'.

Note that the matrix _ of pm x qr is a Hankel-likc matrix is which has rank n where

n is the order of the system. For the case where qr > pm >_ n, there are qr elements in Uq(k)

of qr x 1 with only n independent equations in Eq. (5). As a result, Eq. (5) provide multiple

solutions for uq(k) with the minimum-norm solution expressed by

Uq(k) = T_typ(k + q) - T_tToUp(k + q) - T_tB'up(k - p) - Tct.A'yp(k - p) (8)



or in matrix form

 q(k): - tB, ° ]

For the case where qr = prn, Eq. (9) is unique.

notations

and

vp(k-p)

_,(k - p)

vp(k + q)

up( k + q)

(9)

To simplify Eq. (9), define the following

Fc = [ -_tA' -_*B' ] and Fo = [T] -T]To ] (10)

andv ,k+q,=i p,k+q,] ,11,v.(k- p) = _.(k p) u.(k + q)

where both Fc and Fo are qr x p(rn + r) matrices, and both vp(k - p) and vp(k + q) are

(prn + pr) x 1 column vectors. Equation (9) thus becomes

[vp(k-p)] (12)uq(k)= [Fc Fo ] vp(k+q)

Equation (12) is another form of finite difference model for system identification. For any

given input and output data, there exists a set of F_ and Fo satisfying Eq. (12). Using Eq.

(12) to develop a deadbeat controllcr is shown in the following.

Let us assume that the input vector uq(k) is chosen such that

_,q(k)= F_vp(k- p) (13)

In order to satisfy Eq. (12), the following equation must hold

=0 (14)
Fovp(k + q) : [ _* -_tTo ] up(k + q)

If T_t of qr x pm is full rank pm with qr > prn, and up(k + q) is set to zero, then yp(k + q)

becomes zero. As a result, the control action uq(k) computed from Eq. (13) is a deadbeat
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controller which makes yp(k + q) to zero after q time steps. The integer q is thus called

the deadbeat control horizon, whereas the integer p is commonly referred to as the system

identification (or observer) horizon. The condition, qr >_ pro, means that the control action

should not bc faster than the state observation. That makes the physical sense.

In view of Eq. (6), the first r rows of uq(k) is thc input vector u(k) at time k. Define

Fcl and Fol as the first r rows of Fc and Fo, respectively. Thc control action at u(k) should

be

u(k) = [the first r rows of Fc]vp(k - p)

=  dvp(k- p) (15)

where F_I is the control gain matrix to bc determined.

Thc first r rows of Eq. (12) produces

[vp(k - p) ]u(k) = (thefirstr rows of [ F_ Fo ]) vp(k + q)

_- [Fd Foe ] _p(k +q)

Equation (16) indicates that the input u(k) is related to the past input sequence u(k - p)

to u(k - 1) and output sequence y(k - p) to y(k- 1), and future input sequence u(k + q)

to u(k + q + p - 1) and output sequence y(k + q) to y(k + q + p - 1). There is a total of q

time steps gap from k to k + q - 1. A different integer q produces a different sct of coefficient

matrices F_I and Fol that satisfies Eq. (16).
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To solveEq. (16), let us first form the following matrices

u(k)

Y_(k- p)

Vp ( k .1. q)

[u(k) u(k+l)

_,(k-p) y(k-p+ 1)

u(k - p) u(k - p+ 1)

y(k- 1) y(k)

u(k- 1) u(k)

y(k + q) y(k + q+ 1)

u(k + q) u(k + q + 1)

y(k +q+p- 1)

u(k÷q+p- 1)

• "" u(N-p-q-t-1) ]

• .. y(N-2p-q÷l)

• .. u(N- 2p- q.1. 1)

• .. y(N- p- q)

•.. _(N- p- q)

• .. y(N-p+l)

•.. _(N- p+ 1)

: ".. :

y(k-t- q + p) ... y(N)

u(k .1. q + p) ... u(U)

(17)

where N is the data length used for estimation of coefficient matrices fcl and Fol. Application

of Eq. (16) thus yields

[Vp(k-p)] (18)U(k) = [ Fcl Fol ] Vp(k .1. q)

Let the integer N be chosen large enough such that the matrix U(k) of r × (N - p - q - k .1.2)

has rank r, Vp(k-p) of p(r+m) x(N-p-q-k+2) and Vp(k+q) of p(r+m)×(N-p-q-k+2)

have rank pr .1. n where n is the order of the system. Again, r means the number of inputs

and m represents the number of outputs• Equation (18) produces the following least-squares

solution

[ v_(k- p) It[ Eel -P'ol ] = U(k) (19)

Vp(k .1. q)

where t means the pseudo-inverse.
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4 Recursive Least-Squares Algorithm

There arc many recursive algorithms 2 available to solve the least-squares problem. The

classical least-squares method is the most straightforward approach and is also the basis for

the others. The classical recursive method is briefly described here.

Equation (16) can be written in a compact matrix form

lz(k) _-- [ Fcl Fol ] vp(k +q)

= F_v(k- 1) (20)

where

First, define the following quantities

and _v(k- 1)=

v(k- p)

v(k- 1)

v(k + q)

v(k +q+p- 1)

(21)

vT(k)Pp(k- 1)

Gp(k) = 1 +_T(k)Pp(k- 1)vv(k ) (22)

_(k + 1) = F'(k)_v(k ) (23)

Next, compute the following quantities

Pv(k) = Pv(k - 1)[I- _p(k)Gp(k)] (24)

F(k+l) = F(k)+[u(k+l)-_t(k+l)]Gv(k ) (25)

Equations (22) (25) constitute the fundamental Reeursive Least-Squares (RLS) formulation

for identifying the gain matrix F including Fcl for the deadbeat controller design and Fol for
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the needof systemidentification. The initial valuesof Pp(O) and Yp(1) can be either assigned

or obtained by performing a small batch least-squares after gathering a sufficient number

of data. If initial values arc to be chosen, Pp(O) and F(1) can be assigned as dI2p(r+m)

and Or×2p(r+m), respectively, where d is a large positive number. The positive constant d

is the only parameter required for the initialization. The proper choice of d is based on

practical experience. The initialization introduces a bias into the parameter estimate F(k)

produced by the recursive least-squares method. For large data lengths, the exact value of

the initialization constant is not important.

4.1 Computational Steps after initialization

The computational steps for the recursivc deadbeat control method are summarized in the

following.

1. Form the vector vp(k) as shown in Eq. (21) with the new input v(k + q +p- 1) as the

last r + m rows.

2. Compute the gain vector Gp(k) by inserting Pp(k- 1) and _p(k) in Eq. (22). In this

step, one should compute _T(k)Pp(k - 1) first and then use the result to calculate

[vT(k)Pp(k - 1)Jv,(k).

3. Compute the estimated output _(k + 1) by substituting _F(k) and _v(k) into Eq. (23).

4. Update Pp(k- 1) to obtain Pv(k) with Vp(k) formed from the first step and Gp(k)

computed from the second step.

5. Update F(k) to obtain F(k + 1) from Eq. (25) with the input signal u(k + 1), the

estimated input _(k + 1), and the computed gain Gp(k).
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No matrix invcrse is involved in these computational steps. Updating Pp(k) and Gp(k)

takes more time than computing other quantities. The rccursivc procedure derived for up-

dating the least-squares solution F(k) is very general in the sense that it is valid for any

linear equation such as Eq. (19).

5 Feedback and Feedforward for Disturbance Input

In addition to the control input, there may be other disturbancc inputs applied to the systcm.

Some type of disturbances comes from thc known sources that can bc mcasurcd. Another

type of disturbances is not known but its correlation is known. This section addresscs

the predictive feedback dcsigns including fecdforward from the disturbance inputs that arc

measurable or predictable..

With the disturbance input involved, the multi-step output prediction equation be-

comes

yp(k +q) = ":Vcucq(k )+ TdPUd(q+p)(k )+ Toucp(k +q)+I3_cUcp( k-p)÷l.3tdUdp( k-p)÷.A'yp( k-p) (26)

whcrc

yp(k)

ucp(k+ q)

y(k + q)

y(k + q + 1)

y(k+q+p- 1)

uc(k+q)

uc(k + q + 1)

uc(k+q+p-1)

U_(q+p) (k) =

, u_q(k)=

_d(k)

ud(k + 1)

ud(k + q + p--1)

u_(k)

u_(k + 1)

u_(k + q - 1)

(27)
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The subscriptsc and d signify the quantities related to the control force and the disturbance

force, respectively. The form of the matrix Td_ associated with the disturbances Ud is similar

to 7 -_ defined in Eq. 4. The matrix T__ is a pm x qrc matrix where rc is the number of control

inputs and Td_ is a pm x qrd matrix where r d is the number of disturbance inputs. The

forms of B_c and B_ are also similar but corresponding to different type of forces. Note that

T_, To,and 13_care quantities associated with the control force uc(k).

A similar equation to Eq. (8) can thus bc derived as

(28)

or in matrix form

u_q(k) = [ -_t.A' __t/_ __tB_ _t __tTo _TJTd_ ]

Define the following notations

y_(k- p)

Uc_(k- p)

y;(k+ q)

U¢p(k + q)

Ud(q+p)(k)

(29)

(30)

and

y,(k-p)

u_p(k - p)

u._(k - p)

and Vcp(k + q) = (31)

where F_ is a qr_ x p(m + r_ + rd) matrix but F_o is a qrc x p(m + r_) matrix. The quantity

vp(k - p) is a p(m + r_ + rd) x 1 column vector whereas V_p(k + q) is a p(m + r_) x 1 column

14



vector. Equation (29) thus becomes

vp(k- p)

_,cq(k): IF" r'o r_ ] v_(k +q)

u,_(q+p)(k )

For any given input and output data, there exists a set of F'_, F'_o, and FJ satisfying Eq. (32).

Let us assume that the input vector u_(k) is chosen such that

(32)

u_(k) = r'vp(k- p) (33)

From Eq. (32), the output after q timc steps is then govcrncd vy

f/coVcp(k -_ q) @ Fd_td(q+p)(k ) = 0

or, from Eq. (29),

(34)

Herc we have assumed that the disturbance is measurable. If the disturbance is not pre-

dictable or mcasurablc, Eq. (33) is not valid. Equation (34) indicates that thc output vector

from time k + q is generated by the control vector from k + q and the disturbance vector from

k. If the disturbancc ud(k) such as the random signal is not predictable, then wc cannot use

the disturbance signal for a feedforward design for the control force u(k) at timc k. As a

result, the feedforward design included in thc control law, Eq. (33), is the only way that can

be implemented, bccausc it uses only the disturbance signal before time k. From Eq. (33),

the control action u(k) at time k is

u(k) = (the first r rows of F_c)vp(k -p)

= r'lv,(k - p) (35)
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where F_I is the control gain matrices to be determined.

The first r rows of Eq. (32) produces

u(k) = (the first r rows of [ F_ F_ F_ ])

v,,(k- p)

=[.Fctl F£1 F(_ 1 ] vq_(k+q)

Ud(q+p)( k )

A similar equation to Eq. (19) can then be obtained

[ Ftcl FIcol F_I J = U(_)

where

U(k) = [ uc(k) uc(k + 1)

vp(k - p) =

V_p(k + q) =

Ud(q+p)(k ) =

Y,(k - p)

V_(k + q)

Ud(q+p)(k)

• o o

y(k - p)

_,c(k- p)

u_(k - p)

y(k- 1)

_,c(k- 1)

Ud(k- 1)

y(k + q)

u_(k + q)

uc(N-p-q+ l) ]

y(k - p + l) ...

_(k - p + 1) ...

ud(k--p+ 1) ---

y(k) ...

u_(k) ...

u_(k) .-.
y(k +q+ 1)

u_(k + q + 1)

y(k + q + p)

u_(k + q + p)

ud(k + 1)

ud(k + q + p)

y(k+q+p-1)

uc(k + q +p- 1)

u_(k)

Ud(k + q + p-- 1)

vp(k-p)

vcp(k + q)

Ud(q+p) ( k )

y(N-2p-q+ 1)

uc(N - 2p- q + 1)

ud( N -- 2p -- q + 1)

y(N - p - q)

u_(N - p- q)

Ud( N -- p -- q)

• .. y(N-p+l)

• .. u_(N-p+l)

• .. y(N)

• "" uc(N)

• " ud(g--p--q+l)
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Equation (37) can alsobe computedrecursively.

6 Numerical Example

A simple spring-mass-damper system is used to illustrate various controllers. Several different

cases will bc discussed ranging from single-input/single-output to multi-input/multi-output.

First, the noise-free case is shown and then the case with additive measurement noise is

discussed.

Consider a three-degree-of-freedom spring-mass-damper system

Mii, + E(V + Kw = u

where

m

ml 0

0 m2

0 0

0

0

m3

m
E

41 + 42 -42 0

42+43 -43

0 -43 G

kl + k2 -k2 0 wl Ul

K = -k2 k2 + k3 -k3 , w -- w2 , u --- u2

0 -- k3 k3 W3 U3

and rni, k_, 4i, i = 1, 2, 3 are the mass, spring stiffness, and damping coefficients, respectively.

For this system, the order of the equivalent state-state representation is 6 (n = 6). The

control force applied to each mass is denoted by u,, i = 1, 2, 3. The variables w_, i = 1, 2, 3

are the positions of the three masses measured from their equilibrium positions. In the

simulation, rnt = m2 = rn3 = 1K9, kl = k2 = k3 = 1,O00N/m, (l = _2 = _3 = 0.1N-

sec/rn. The system is sampled at 50Hz (At = O.02sec.). Let the measurements y_ bc the

accelerations of the three masses, yi = ibi, i = 1, 2, 3 .

Let us consider a single-control-input and single-output case where thc control input

to the system is the force on the first mass (i.e., u_. = ul), and the output is the acceleration
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of the third mass (i.e., y = @3) (non-collocated actuator-sensor). Therefore, the smallest

order of the ARX model p is 6 corresponding to a deadbeat observer, and the smallest value

for q is also 6 corresponding to a deadbeat controller which will bring the entire system to

rest in exactly 6 time steps. Note that this is a non-minimum phase system.

Consider the case where the controller is computed with q = 6. Let the initial guess

for Pp(0) and F(1) shown in Eqs. (22) and (23) be 1000/24x24 and 01x24, respectively. The

input signal is a sequence of normally distributed random numbers with zero mean and unit

variance. Let the control action be turned on at the data point 18. In other words, we wait

no time to close the system loop as soon as the first nonzero vector Vp(k) defined in Eq. (21)

is formed. Figure 1 shows the open-loop and closed-loop histories of input and output. The

solid curve is the open-loop response and the dashed curve is the closed-loop response. The

control gain starts with a zero vector and ends with the controller

uc(k) = -0.3848uc(k - 1) + 0.7217uc(k - 2) + 0.2536uc(k - 3)

-O.0681uc(k - 4) - O.0150u_(k - 5) + O.O000u_(k - 6)

-0.9828y(k- 1)- 0.7304y(k- 2)- 1.2904y(k- 3)

-0.1818y(k - 4) + 0.1908y(k - 5) - O.O007y(k - 6)

The controller converges to the one using the batch approach shown in Eq. (19) without any

control action.

Let the output be added with some measurement noise so that the signal to noise ratio

is 11.4 (i.e., the output norm divided by the noise norm). The noise is random normally

distributed with zero mean. Set the values of p and q to the same as that for deadbeat, i.e.,

p = q = 6. The open-loop and closed-loop time histories are shown in Fig. 2. The control
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gain starts with a zero vector and ends with the controller

u_(k) = -O.1208u_(k - 1) + 0.6969u_(k - 2) - O.02486u_(k - 3)

-O.0780uc(k - 4) + O.0704u_(k - 5) + O.0762u_(k - 6)

-0.5724y(k - 1) - 0.3321y(k - 2) - 0.7017y(k - 3)

+0.0593y(k - 4) + 0.2075y(k - 5) - 0.1076y(k - 6)

Although the final control gain looks considerably different from the one shown earlier for

the noise-free case. The performance for both noise-free and noisy cases is quite similar.

Increasing the value of q does not seem to improve the performance. In some cases with q

larger than p, the performance is worse than the case with p = q when the control action

is turned on too early. Given suiTicicnt time steps for the control gain to converge to a

reasonable level, the performance may be improved somewhat particularly for the case where

q > p. One may raise the question whether the recursive controller design works for the case

where the order of the controller is smaller than the order of the system, i.e., p is smaller

than 6 for this example. Let us choose p = q = 4. Using the same set of data for the previous

case, the input and output time histories arc shown in Fig. 3. Obviously, the performance

is not as good as the ones shown earlier but it is still stable and somewhat acceptable. In

practice, the order of a system is unknown and thus there is a great possibility that the

values of p may be smaller than the true one.

7 Concluding Remarks

A new rccursive predictive control method has bccn presented in this papcr. System identi-

fication was reformulated in such a way that it fits better for predictive controller designs.

In other words, the conventional thinking in system identification has been re-oriented to

focus on the control design process. The conventional procedure for any controller designs

includes two steps, i.e., first perform system identification within an acceptable level of ac-
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curacy and then conduct a controller design. The error in system identification will likely be

accumulated and carried through the controller design process. As a result, the conventional

approach tends to introduce more error in the controller design than system identification

itself. The method derived in this paper uses a different approach for system identification

to eliminate the additional controller design process. For noise-free cases, both conventional

and new approaches produce an identical result if the predictive controller is unique. For

non-uniquc controllers, thc new approach provides the control gain smaller in norm than

that from the conventional approach. This is due to the fact that, instead of minimizing

the output error, the new approach minimizes the input error to compute the control gain.

The proposed rccursive mcthod has a considerable advantagc of computational speed. For

noisy cases, numerical simulations havc showed that the new method is more robust than

the other methods.
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